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This paper describes a detailed study of the structure of turbulence in boundary layers 
along mildly curved convex and concave surfaces. The surface curvature studied 
corresponds to SIR, = rt 0.01, 6 being the boundary-layer thickness and Rw the radius 
of curvature of the wall, taken as positive for convex and negative for concave 
curvature. Measurements of turbulent energy balance, autocorrelations, auto- and 
cross-power spectra, amplitude probability distributions and conditional correlations 
are reported. It is observed that even mild curvature has very strong effects on the 
various aspects of the turbulent structure. For example, convex curvature suppresses 
the diffusion of turbulent energy away from the wall, reduces drastically the integral 
time scales and shifts the spectral distributions of turbulent energy and Reynolds 
shear stress towards high wavenumbers. Exactly opposite effects, though generally 
of a smaller magnitude, are produced by concave wall curvature. It is also found that 
curvature of either sign affects the v fluctuations more strongly than the u fluctuations 
and that curvature effects are more significant in the outer region of the boundary 
layer than in the region close to the wall. The data on the conditional correlations are 
used to study, in detail, the mechanism of turbulent transport in curved boundary 
layers. 

1. Introduction 
Several studies in the past (e.g. Wattendorf 1935; Schmidbauer 1936; Pate1 1968) 

have shown that the behaviour of the turbulent boundary layer is very sensitive to 
longitudinal wall curvature. Bradshaw (1969) showed that even a very mild longi- 
tudinal curvature (say 6/Rw z 6 being the boundary-layer thickness and R, the 
wall radius, taken positive for convex wall curvature and negative for concave 
curvature) can significantly affect the length-scale distribution in the boundary layer 
and hence the flow development. Subsequent work by others confirmed this. It is 
now fairly well known that convex wall curvature inhibits turbulence while concave 
curvature enhances it. It is also known (Eskinazi & Yeh 1956) that the wall shear 
stress is larger on the concave wall than on the convex wall of a curved duct. The 
explanation given for these effects stems from stability arguments. A lump of turbu- 
lent fluid is in a state of stable equilibrium over a convex wall whereas it will be in a 
state of unstable equilibrium over a concave wall. Hence momentary disturbances 
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(turbulent motions) are damped in one case (convex wall) and amplified in the other 
(concave wall). There thus seems to be a strong analogy between the effects of curvature 
and buoyancy. In  fact, on the basis of such an analogy, Bradshaw (1 969) estimated the 
effect of streamline curvature on the mixing length I ,  in a boundary layer by using 
the following equations: 

lmf / l ,  = 1 +pRic 
lmllmr = 1 - 2Ric 

for convex curvature, i.e. 
for concave curvature, i.e. 

Ric > 0, 

Ric < 0 
(valid only for - 0.5 < Ri, < 0 ) ,  

where I ,  is the mixing length in a flat-wall boundary layer. The term Ri, was called 
by Bradshaw the ‘ curvature Richardson number ’ and was defined as 

where R is the radius of curvature of the streamline. Subsequent workers incorporated 
Bradshaw’s recommendation (1.1) in calculation procedures for boundary layers over 
curved surfaces. While there are not sufficient experimental data available in this area, 
in the few cases where the data are available predictions from these calculations agree 
reasonably well with measurements (e.g. Rastogi & Whitelaw 1971; Papailiou, Nurzia 
& Satta 1972; Johnston & Eide 1976; Meroney & Bradshaw 1975). 

While it has been known for quite some time that streamline curvature affects the 
structure of turbulence, much of the detailed study reported in this area is very recent. 
This fact is brought out by reference to a review article by Bradshaw (1973). Since 
then, a few detailed investigations have been reported. These are the studies of So 
& Mellor (1972, 1973, 1975), Ellis & Joubert (1974), So (1975)’ Meroney & Bradshaw 
(1975), Irwin & Smith (1975) and Castro & Bradshaw (1976). The experiments of 
So & Mellor (1972) provided the first detailed turbulence measurements in curved 
boundary layers. They measured turbulent intensities and shear stress in boundary 
layers over both convex and concave walls. Castro & Bradshaw (1976) studied the 
effect of streamline curvature in highly sheared mixing layers. Their measurements 
included, in addition to turbulent intensities and Reynolds shear stress, a detailed 
turbulent energy balance. 

The experimental studies mentioned above relate to strong streamline curvature 
()S/RwJ w 0.1 in the experiments of So & Mellor and SIR w 0-2 in the experiments 
of Castro & Bradshaw). Unfortunately, there is virtually no detailed work of a similar 
kind reported for mild curvature, with the single exception of the recent study by 
Meroney & Bradshaw (1975). They made measurements of turbulent intensities and 
Reynolds shear stress in curved boundary layers with 6/Rw w f 0-01. This value of 
SIRw is in the same range as that studied by the present authors. 

‘When the present investigation was started, there were very few data on curvature 
effects in turbulent boundary layers. The authors undertook a comprehensive study 
of the effect of mild wall curvature (6 /R,  x k 0.013) on the behaviour of the turbulent 
boundary layer. The investigation included an experimental study of both the mean 
and the turbulent structure of the flow and is fully described in Shivaprasad (1976). 
While the investigation was in progress, several other reports mentioned earlier 
appeared. However, the authors believe that the present study has gone further than 
the other investigations reported so far, especially with regard to mild curvature 
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FIGURES 1 (a, b). For legend see next page. 

effects. The mean flow study brought out some significant points not hitherto ade- 
quately reported in the literature and is reported separately (Ramaprian & Shiva- 
prasad 1977). The measurements of turbulence intensities and shear stress were used 
to  study the applicability of some of the phenomenological models of turbulence in 
the presence of streamline curvature. The shear-stress data were also used to  examine 
the effect of curvature on the mixing length, thus providing the first direct test of 
Bradshaw’s recommendations represented by (1.1). This part of the study is also 
reported elsewhere (Shivaprasad & Ramaprian 1977). 

The study of the distributions of the mean and turbulent quantities across the 
boundary layer revealed that even mild curvature has a very strong effect on the 
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FIGURE 1. Some typical results for curved-wall boundary layers from Shivaprasad & Ramaprian 
(1977). (a )  Mean velocity distributions across the curved boundary layers. Station: . ,20; V ,  23; 
U, 26; 0, 29; A, 32; 0, 35. -, U+ = 5.6 log y++ 5.5. (Station designations are explained in 
figure 2.) (b)  Reynolds shear stress distribution across the convex-wall boundary layer. Station: 
@, 20; V ,  23; 0 , 2 6 ;  0 , 2 9 ;  A ,  32; 0,35. -=-, dataofso & Mellor (1972) corresponding to a 
station 23in. downstream of the beginning of curvature. (c) The distribution of the Prandtl 
mixing length across the boundary layer. 0 ,  flat wall (station 20); 0, convex wall (station 35); 
m, convex-wall experiments of So & Mellor (1972) 23 in. downstream from beginning of curvature. 
( d )  The distribution of the structure parameter a across the boundary layer. Symbols as in (a) .  

behaviour of the boundary layer. This can be seen typically from figures l(a)-(d),  
which are takenfrom Ramaprian & Shivaprasad (1977) and Shivaprasad & Ramaprian 
(1977). The designation of the measuring stations is explained in figure 2. In fact, the 
measurements indicated that the effect of mild curvature is stronger than what one 
might expect from a linear interpolation between zero a,nd strong curvature. This 
becomes apparent from a reference to figures 1 (b)-(d).  In figures 1 ( b )  and (c) the data 
for mild convex curvature on the distributions of the Reynolds shear stress -p iZ  
and the mixing length 1, are compared with the (available) data for strong convex 
curviit,ure of So & Mellor (1972). The 'disproportionately large ' effect ofmild curvature 
is apparent when one remembers that the curvature in the latter case is about 10 
t , i m t b s  st.ronger than that in the former. The same conclusion is again reached when 
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FIUURE 2. Details of the test section. 1, = 4ft, I ,  = 3ft 11  in., I, = 1 ft, l4 = 4in. A ,  inlet straight 
section; B ,  curved section (10 x 4in.); C ,  exit straight section; D, wall static taps. The radius 
of curvature Rq of the centre-line of the test section is 100 in. 

Station ... 20 23 26 29 32 35 
2 (in.) Convex wall 40.6 50.5 59-3 68.2 77.0 85.8 

Concave wall 40.6 50.8 59.9 69.1 78.3 87.5 

the values of the structure parameter a = - G/? (ranging from 0.12 to 0-07 across the 
boundary layer and shown in figure I d )  are compared with the value of about 0.07 
observed by Castro & Bradshaw in a curved mixing layer with 6/R x 0.2. Figures 
1 (a)-@) will be referred to again later in this report but are introduced here to serve 
as a background for the detailed study reported in the present paper. The ‘large’ 
effect of mild curvature on the turbulent boundary layer provided the motivation for 
studying these flows in even greater detail. The combination of large effects and very 
small streamline curvature allows measurements to be made easily and accurately 
using conventional hot-wire techniques. Yet, because of the nonlinear nature of the 
curvature effect mentioned above, results obtained for mild curvature are likely to 
be qualitatively valid for stronger curvatures also. In  any case, the mild curvature 
results are useful in their own right, since mildly curved boundary layers are often 
encountered in practice (e.g. in aircraft and turbomachinery applications). The results 
reported in the present paper include measurements of turbulent energy balance, 
autocorrelations, energy spectra, amplitude probability distributions and conditional 
correlations of turbulent fluctuations. At the end, the structure of turbulent 
transport within the boundary layeris discussed in the light of the data obtained. 

2. The experimental programme 

2.1. The apparatus 

The test section in which the experiments were carried out is shown schematically 
in figure 2. A more detailed description of the test facility is given in Shivaprasad 
(1976). The loin. high side walls of the 10 x 4in. test section were used as the working 
surfaces. The initial 4 f t  long straight section ensured that a fully developed turbulent 
boundary layer had formed before the flow reached the curved walls. This was checked 
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by comparing the distributions of the mean velocity 2r ,  the turbulence velocities uf 
and v f  , the turbulent shear stress -pU.V, the energy spectra of uf and v f  and the spectrum 
of U.E with those for a fully developed flat-plate boundary layer (e.g. Klebanoff 1954; 
Bradshaw 1967). At the test velocity of 70fts-', the boundary layers developing 
along the convex and concave side walls did not meet each other even at  the end of 
the curved test section. There was, in fact, a 'free stream' about 3 in. thick at station 
35, where the detailed measurements were made. The turbulence intensity in the free 
stream was about 0-3 %. The radii of the convex and concave walls were 98 in. and 
102in., respectively. The value of jS/R,J varied slightly along the walls. However, 
a nominal value of 0.013 will be used in this paper to characterize the present wall 
curvature. The longitudinal pressure gradient was nominally zero but, in fact, a 
mildly favourable pressure gradient existed along the test section owing to the 
blockage effect of the boundary layers along the walls. This was, however, checked 
and it was ensured that this pressure gradient was too small to affect the results 
presented in this paper in any significant way. 

Since it was planned to make very detailed measurements, it became necessary to 
limit the observations to one typical longitudinal location on each wall, so that the 
amount of data to be handled could be kept down to a manageable level. Station 35 
was selected for the detailed measurements over both walls. This location corresponded 
to a region where the flow was developing with a sustained curvature effect only, the 
effect of the sudden change in wall curvature having died down. It can be seen from 
figures 1 (a)-(d) that, while the flow has not strictly reached equilibrium on either wall 
at  station 35, there are no large variations in the distributions of the various flow 
quantities in the streamwise direction around station 35. Another important thing 
which can be observed is that the various distributions are qualitatively the same at  
all the locations. Station 35 being the last station, the boundary-layer thicknesses 
on both the walls were largest at  that station. It was therefore easier to make measure- 
ments at  smaller values of y/S. Further, since the Reynolds numbers R, were reason- 
ably large at this station for both the walls and not too different from each other 
(approximately 4600 for convex wall and 5000 for concave wall), it  would be fairly 
realistic to make a comparison between the observations on the two walls. The 
boundary-layer thickness S (based on 0.995 of the inviscid angular momentum) at  
this station was 1.16in. over the convex wall and 1.52in. over the concave wall. The 
boundary-layer thickness over the flat wall at  station 20 was 0.78 in. 

All the measurements were made in a horizontal plane at  the midheight of the test 
section. Checks (see So & Mellor 1972) such as momentum balance, yaw probe traverse 
for flow inclinations and measurement of the Reynolds shear stress component 
-pZW were made to assess the magnitude of the secondary flows a t  station 38. The 
details of these checks and the results are reported in Shivaprasad (1976). It was found 
that there were no significant secondary flows within a distance of 1 in. on either side 
of the plane of measurement. 

A significant point to be mentioned here is that, even after many careful tests, it 
was not possible to detect, in the present experiments, the presence of any organized 
longitudinal vortices of the Taylor-Gortler type over the concave wall. This is sur- 
prising since other investigators have reported their presence both in strongly and 
mildly curved flows (Tani 1962; So & Mellor 1972, 1975; Meroney & Bradshaw 1975). 
It is perhaps possible that the rather small aspect ratio, viz. 2.5, of the present test 
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section and the consequent strong secondary flows in the 08-centre planes might have 
either suppressed these vortices completely or at least rendered them too weak to be 
detected. Hence the data for the concave wall have been presented only for the 
midplane and it can be assumed that there was negligible organized spanwise variation 
observed in the behaviour of the boundary layer. 

2.2. Instrumentation and data processing 

Mean velocity measurements were made using a total-head tube together with a 
disk-type static pressure tube. Turbulence measurements were made using a dual- 
channel constant-current hot-wire anemometer system (CCA) described in Shiva- 
prasad (1976). Both single- and X-wire probes were used. Adequate precautions were 
taken in the calibration and use of the hot-wire equipment. These are also discussed 
in detail in the above reference. A schematic diagram of the turbulence instrumenta- 
tion is shown in figure 3. Turbulent energy balance terms were measured directly 
from the hot-wire signals. The dual-channel hot-wire system provided simultaneous 
u and v signals. These were used for the measurement of the triple correlations &v 
and vrby employing a four-quadrant multiplier and time averager. The triple correla- 
tion &v was not measured. The diffusive flux $6 was obtained from the assumed 
relation (see Bradshaw 1967) - -  

@v = $(u% + v3]. (2.1) 
_.-  

This is equivalent to assuming that the diffusive flux xv is given by i(u2v + w3). The 
pressure diffusion flux PE/p was also not measured. 

The rate of dissipation 6 of turbulent kinetic energy was measured by using the 
approximate relations based on Taylor’s hypothesis and the assumption of Iocal 
isotropy (see Hinze 1959, p. 399): - 

~ = 1 5 = (  v au ) 2 

u2 at ’ 

where v is the kinematic viscosity of the fluid. A single-wire probe of diameter 0.0002 in. 
and sensing length 0-02 in. was used for this purpose. The sensing length was smaller 
than the expected Taylor microscale even close to the wall, Differentiation of the u 
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signal was carried out using a differentiating circuit preceded by a sharp cut-off 
low-pass filter set at  14 kHz. 

With regard to the energy balance measurements it is necessary to point out that 
the experimental approach was to spend relatively more time and effort on those 
measurements that were expected to contribute significantly to the understanding of 
curvature effects, and less time on the rest. For example, a relatively simpler method 
was used to measure the dissipation rate since the near-wall region, where dissipation 
terms are important (and also where the present measuring technique is the least 
accurate), is known to be insignificantly affected by mild curvature (Ramaprian & 
Shivaprasad 1977; Meroney & Bradshaw 1975). Similarly, the triple correlation term 
w22) was not directly measured but approximately estimated, because its precise 
measurement would not have added significantly to the information already provided 
by the measurement of & and The exception, of course, is the jG/p  term, which 
is very important but was not measured owing to physical limitations. 

The data on autocorrelations, spectra and amplitude probability distributions were 
obtained by first recording the hot-wire signals on analog tape and later processing 
them digitally. The fluctuating signals u + v and u - v from the two wires of the 
X-wire probe (or the signal u only from the single-wire probe) were recorded simul- 
taneously on two channels of anaIog tape. The instrument used was a GTC (Genesco 
Technology Corp.) Model 10-286, 14-channel FM tape recorder. Recording was done 
at  a tape speed of 30 in./s. Record lengths varied from 90 s for measurements near the 
wall to 240 s for measurements near the outer edge of the boundary layer. The system 
had a flat frequency response from d.c. to 20 kHz. A suitably designed ‘isolator’ was 
used to recover the u and v signals simultaneously from the recorded u + v and u - v 
signals, during play-back. The u and v signals were then passed through a variable 
frequency, sharp cut-off, low-pass filter (36 dB/octave). The filtered signals were 
finally fed to a HP 54518 Fourier analyser for analysis. The filtered signals were first 
digitized in the Fourier analyser and then processed for obtaining autocorrelations 
etc. The procedure used for digital data processing conformed to the well-established 
data processing practice described in recent literature (see, for example, MaGrab & 
Blomquist 1971), and is explained in detail in Shivaprasad (1977). Special precautions 
were taken to prevent aliasing errors and statistical instability from affecting the 
results. 

In addition to the measurements described above, measurements were also made 
of several conditional correlations, using the instantaneous u and v signals from the 
hot-wire amplifiers. These correlations included u+v+, u+v-, u-v+, u-v-, u+, u2 ,  v: and z, where the subscripts represent the sign of the instantaneous fluctuation with 
respect to the time-mean value. It can be seen that the first four conditional correla- 
tions (to be denoted by the general symbol (G)J represent the contribution from the 
four quadrants to the Reynolds shear stress - p Z ,  while the last two pairs represent 
contributions to the Reynolds normal stresses 3 and pv2 respectively. These con- 
ditional correlations were obtained by splitting the instantaneous u and v signals into 
positive and negative halves (using two splitters of the type described by Wallace, 
Eckelmann & Brodkey 1972) and correlating the appropriate quantities using an 
analog multiplier and time averager. The instrumentation used €or this purpose is also 
shown schematically in figure 3. For more details reference may be made to Shiva- 
prasad (1976). 

----_- - - 
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FIGURE 4. The distribution of the rate of turbulent energy production across the boundary layer. 
0, convex wall; A, concave wall; 0 ,  flat wall. The curved-wall data are for station 35, the 
flat-wall data for station 20. 

3. Results and discussion 

3.1. The turbulent kinetic energy balance 

The turbulent kinetic energy balance was obtained by measuring the terms rep- 
resenting production, dissipation, advection and diffusion in the non-dimensional 
turbulent kinetic energy equation: 

advection diffusion production dissi- 
patior, 

where 7 is the mean velocity normal to the wall, p is the turbulent pressure fluctuation 
and u* is the friction velocity. Equation (3.1) is strictly applicable only to a flat-wall 
boundary layer. The exact equation in general orthogonal co-ordinates for two- 
dimensional flow over a curved surface can be found in So & Mellor (1972). In these 
co-ordinates, streamline curvature introduces additional terms into the turbulent 
energy equation. An analysis of the order of magnitude of the various terms in this 
equation reveals that these additional terms can be neglected if SIR < 1 and if 
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FIGURE 5. The distribution of (a) the rate of dissipation and (6) the Taylor microscale h &crow the 
boundary layer. 0, convex wall (station 35); A, concave wall (station 35); __ , flat wall (from 
Rajagopalan 1974). 

_ _  ---- 
$/R -g a$/ay, where $ = U, V ,  u2, v2, uv, U ~ V ,  etc. Since both these conditions were 
satisfied in the present case, it  will be assumed that (3.1) can be used for examining 
the turbulent energy balance. 

The distributions of the rate of production over the two walls are shown in figure 4, 
along with the distribution for the flat wall at  station 20. It is seen that over the convex 
wall the rate of turbulent energy production falls steeply and is considerably less 
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FIGURE 6 ( a ) .  For legend see next page. 

than for a flat wall beyond y/6 = 0.1. The outer region of the boundary layer over the 
concave wall, however, does not show any significant deviation from a flat-wall 
boundary layer with regard to the rate of turbulent energy production. 

The distributions of the rate of dissipation for convex, concave and flat walls are 
shown in figure 5 (a) .  The Taylor microscale h for these three cases, obtained from the 
formuIa 

is shown in figure 5 ( b ) .  The flat-wall distributions plotted in figures 5 (a)  and ( b )  are 
from the measurements of Rajagopalan (1974) and correspond roughly to the same 
Reynolds number as that at  station 35. The flat-wall data of the present experiments 
are not used for comparison. This is because the Reynolds number at station 20 was 
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FIGURE 8(a ) .  For legend see next page. 

small and the dissipation distribution has a strong dependence on Reynolds number, 
particularly at low Reynolds numbers. It is seen from figure 5 (a)  that (as expected) 
there is very little difference among the distributions of the dissipation rate over the 
three walls. A close examination of figure 5 ( b ) ,  however, indicates a slightly larger 
microscale over the concave wall up to a y/6 of about 0.6 compared with the convex 
wall. The reduction in the microscale for y/S > 0.6 in the case of the concave wall is 
probably due to the strongly intermittent turbulence structure in the outer layer. 

The distributions of the turbulent kinetic energy diffusion fluxes F v  and 2 are 
shown for the three walls in figures 6 (a )  and (b ) .  It is seen that the two fluxes exhibit 
similar trends. The fluxes are larger in the case of the concave wall and very much 
smaller in the case of the convex wall when compared with the flat wall. The fluxes 
are everywhere positive, i.e. they are directed away from the wall. As already men- 
tioned, the total turbulent kinetic energy diffusion flux &% was obtained using (2.1). 
(The observed similarity in the trends of the u22) and 7 3  distributions suggests that 
direct measurement of &is perhaps not really essential.) The turbulent kinetic energy 
diffusion term in (3.1) was obtained from this flux distribution by graphical differentia- 
tion. The distribution of the diffusion term is plotted for the three walls in figure 7. 
Figures 8 ( a )  and ( b )  show the turbulent kinetic energy balance for the curved-wall 
boundary layers. In  these figures the pressure diffusion term pV/p is obtained as the 
closing term in (3.1).  Its accuracy should be viewed with some reservation owing to 
the experimental uncertainties in the measurement of dissipation and diffusion. 
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, diffusion term (of pressure), - - (p/pv) is obtained as the closing term. 

Several important features are brought out in figure 7. In  the case of the concave 
wall, the region where there is a net loss of energy by turbulent kinebic energy diffusion. 
extends to a much larger distance from the wall when compared with that for the flat 
wall. Also, the amount of energy which this region loses to the outer layer is greater. 
Thus the transport of energy by the turbulent fluctuations is increased and also such 
transport takes place over a larger distance. Figure 8 ( b )  shows that the pressure 
fluctuations further tend to increase the extent of the region which loses energy to 
the outer layers and also the magnitude of the diffusion itself. Owing to the increased 
mixing, a larger region of the outer layer of the concave-wall boundary layer feels the 
effect of the wall. This is the reason why the log law extends over a larger region and 
also why the wake-like outer layer is less prominent as can be seen from figure 1 (a). 
Exactly the opposite of this happens in the case of the convex wall. The region which 
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Curve Component 71 Wall Station 
1 u 0-23 Flat 20 
2 u 0.3 Convex 25 
3 u 0.3 Concave 35 
4 V 0.23 Flat 20 
5 V 0.3 Convex 35 

Note the change in scale for curves 4 and 5. The arrows indicate the ' last point ' on the correlation 
curves for computing the area under the curves. 

supplies energy to the outer layer is very small and appears to be confined to a very 
small distance from the wall (perhaps < 0.1s). Unfortunately, no diffusion measure- 
ments could be made at points with y/6 < 0.075 in the thin boundary layer over the 
convex wall. However since the diffusion term must integrate to zero across the 
boundary layer, the required loss due to diffusion must occur very close to the wall. 
The trend of the data from concave- and flat-wall boundary layers suggests that this 
is possible. It is clearly seen that, over the convex wall, the transport of turbulent 
kinetic energy due to the turbulent fluctuations is suppressed. In this case, even the 
transport due to pressure fluctuations is not very significant as can be seen from 
figure 8(a). This reduced diffusion of turbulent energy results in confining the effect 
of the wall to a small region near the wall. 

3.2. Autocorrelations 

Correlograms. The autocorrelation coefficients of the fluctuating velocity components 
u and v at any location (2, y )  are defined as 

Rub, Y, T )  = u(x ,  9, t )  u(x ,  y, t + T ) / a x ,  9) 

and 

where T is the time interval between the instants. 
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FIGURE 10 (a). For legend see next page. 

Correlograms (curves of R us. T) of u and v fluctuations for flat, convex and concave 
walls were obtained at several points across the boundary layer. The correlograms 
over the curved walls, in general, looked similar to those observed in the flat-wall 
boundary layer. They did not consistently show the presence of any predominant 
frequencies though some of the correlograms did exhibit some mild fluctuations around 
the T axis. The correlograms of v fluctuations for the three walls showed some dif- 
ferences in shape. The correlograms for the concave wall showed a long tail and those 
for the convex wall showed a short tail when compared with the flat-wall correlo- 
grams. Many of these features can be observed from the typical correlograms shown 
in figure 9. 

The integral time scales T, and T, of the u and v fluctuations were calculated by 
finding the area under each correlogram up to the point where it first reached zero 
(as indicated by the arrows on the typical correlograms in figure 9). This procedure 
was found to be generally satisfactory, since in most cases the correlograms did not 
have any significant negative lobes. The integral time scale gives a measure of the 
duration for which the turbulent fluctuations of various frequencies last, on average, 
before getting destroyed. From figure 9, it can be seen that correIogram 3 for the 
concave mall has a larger area, indicating a longer average lifetime for the eddies, 



Turbulent boundary layers along mildly curved surfaces 289 

A 
A 

a A 
A 

0 0.2 0.4 0.6 0.8 I .0 
tl 

FIGURE 10. The distribution of the non-dimensional length scales of the turbulent velocity 
fluctuations across the boundary layer. (a )  u', (b )  v'. Symbols as in figure 4. 

while the correlograms (e.g. 2 and 5) for the convex wall indicate shorter average 
lifetimes when compared with those (e.g. 1 and 4) over the flat wall. A quantitative 
description of these features is given in the next paragraph. 

Length scales. Using the local mean velocity as the convection velocity, integral 
length scales of the u and v fluctuations can be obtained from the integral time scales. 
These have been normalized with respect to the boundary-layer thickness and are 
plotted in figures 10(a) and (b) .  Large differences can be observed between the convex- 
and concave-wall length scales for both u and v fluctuations. The normalized length 
scales of the u fluctuation over the concave wall are much larger when compared with 
those over the convex wall across almost the entire boundary layer. However, the 
increase over the flat-wall length scale is not very large. On the other hand, over the 
convex wall there is a large reduction in the length scale of u fluctuations compared 
with the flat wall. This trend is in conformity with the trend shown by the other flow 
quantities. The length scales of the v fluctuations show a much larger difference between 
convex and concave walls compared with the length scales of u fluctuations. Also, the 
shape of the distribution of v length scales gradually varies from a flatter shape for 
the convex wall to a peaky shape for the concave wall, with the flat-wall data falling 
in between. These indicate that the v fluctuations are very sensitive to wall curvature. 

The difference in the behaviour of the u and v fluctuations is clearly seen in figure 11, 
where the ratio TJTV is plotted. Over the convex wall this ratio gradually decreases 
across the boundary layer from 4 t,o 2,  whereas on the concave wall the ratio first 
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FIGURE 11. The distribution of TJT, across the boundary layer. Symbols as in figure 4. 

decreases from 4 to 2 and then increases to a value of 5 in the outer region. This is 
because, in the case of the concave wall, the length scale of the v fluctuations con- 
tinuously decreases in the outer layer after it reaches a maximum value around 
y/6 _N 0.3. This peculiar behaviour of the length scale in the case of the concave wall 
is rather unexpected and cannot be explained at  this stage. It can, however, be seen 
that the flat-wall behaviour is approximately intermediate between that for the 
convex and concave walls. I t  can also be noted that the values of T,/T, shown in 
figure 11, as well as the length scales themselves (estimated from extrapolation in the 
case of v fluctuations), are not substantially affected by curvature in the region close 
to the wall. 

3.3. Turbulent spectra 
A few typical normalized auto- and cross-power spectra of the u and v fluctuations 
are shown in figures 12 (a)-(c) for the three walls. For this purpose, we define the one- 
dimensional wavenumber k in the usual way, as 

k = 2rrf/U, (3.3) 

where f is the frequency. Using the above definition, one can compute the one- 
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dimensional spectral functions in wavenumber space from the measured frequency 
spectra. The normalized spectral functions E(k8) are again defined in the usual way, 
by the relations 

I jomEll(kb) d(k8) = 1 for the autospectrum of uI2, 

i /0aE22(kl) d(k8) = 1 for the autospectrum of 21'2, (3.4) 

J / rE12(kS)d(k8)  = 1 for the spectrum of -5. 

Figure 12(a)  compares the d2 spectra for the three walls at  two typical points 
(y/6 = 0-1 and y/S = 0-6) in the boundary layer at station 35. Prom this figure, it  
can be seen that the spectra tor the two curved boundary layers are not significantly 
different from each other except near the low wavenumber end. The difference at the 
low wavenumber end leads to the difference in the integral time scales which has 
already been observed in the plots of the length-scale distributions. It can also be 
seen from figure 12 (a)  that the spectral distributions of ura in the inner (11 = 0.1) and 
outer (7 = 0.6) regions are not generally different from each other. 
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FIUURE 12. Non-dimensional spectra at 7 x 0.1 and 0.6. (a) u'z, ( b )  w ' ~ ,  (c )  UV. ---- , convex 
wall; -.- , concave wall; -, flat wall. The curved-wall data are for station 35 and the flat-wall 
data for station 20. The vertical line in (c) corresponds to a non-dimensional wavenumher of 4. 
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In  contrast with the above behaviour, the spectral distributions of vr2 were found 
to be strongly affected by curvature especially in the outer part of the boundary layer. 
Two typical distributions at 7 = 0.1 and 7 = 0.6 are shown in figure 12(b).  At 7 = 0.1 
the difference between the spectral distributions for convex and concave walls is very 
small except at very low wavenumbers. (The authors are unable to explain why, at 
7 = 0.1, the spectra for both curvatures, especially at higher wavenumbers, deviate in 
the same direction from the flat-wall spectra. In  fact this behaviour was observed near 
the outer edge of the boundary layer also (7 > O a Q ) . )  However, in the outer layer, the 
effect of curvature was found to be very strong over the entire wavenumber range as 
is evident from the data a t  7 = 0.6 in figure 12(b).  It can be seen that with convex 
curvature there is a substantial contribution to the spectrum from the high wave- 
numbers. In  fact, even at  a non-dimensional wavenumber (Id) of 20, the contribution 
is still about 15 % of that a t  a wavenumber of 0.2. On the other hand, in the case of 
the concave wall the spectrum drops very steeply, the corresponding contribution 
being less than 1 yo. This means that a large contribution to vr2  comes from relatively 
large eddies in the case of the concave wall whereas the contribution is distributed 
more evenly in the case of the convex wall. Consequently, the development of the 
flow over the concave wall is influenced by the dynamics of the larger eddies to a 
greater extent than in the case of flow over the convex wall. The observed strong 
effect of curvature on the vf2 spectra and the relatively weak effect on the ur2 spectra 
are in general agreement with the observations of Eskinazi & Yeh (1956) in curved- 
channel flow. 

The effect of curvature on the structure of turbulence is again very clearly indicated 
by the typical spectra of - G presented in figure 12 (c). These spectra are presented 
on linear plots as the effects are more clearly brought out this way. Considering the 
spectra corresponding to y/S = 0.6, it can be seen that in the case of the convex wall 
about 50 yo of the shear stress is produced by eddies smaller than $ of the boundary- 
layer thickness (the k6 corresponding to this is shown by a line in the figure), whereas 
on the concave wall the contribution to the UV from eddies smaller than $ of the 
boundary-layer thickness is only about 25 yo, Thus it is seen that the increased shear 
stress observed on the concave wall essentially comes from the relatively larger 
eddies. These larger eddies are suppressed over the convex wall with a consequent 
reduction in the shear stress. The flat wall is seen to have a trend intermediate between 
convex and concave walls. Again, the contrast between the results for the two walls 
is seen to be less strong in the inner region (y/6 = 0-1)  than in the outer region 
( y / 6  = 0.6). 

3.4. Amplitude probability distributions 

The amplitude probability density distributions of the u and v signals are shown in 
figures 13 (a)-(c) for the flat as well as curved walls at a few typical points across the 
boundary layer. For comparison, the Gaussian distribution is also shown. The dis- 
tributions have been normalized with respect to the maximum probability density and 
half the width of the distribution curve at  10 % of the maximum probability density. 
In figures 13 (u)-(c), P* and A * are the normalized probability density and amplitude 
so obtained. The maximum probability density did not occur at zero amplitude, though 
the amplitude at  maximum probability density was quite small in each case. (This 
can be seen from figures 13(b)  and ( c ) ,  where the origins for the distribution curves 
are shown for two typical cases.) Hence for easy comparison the distribution curves 
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FIGURE 13. Amplitude probability density distributions of the turbulent velocity fluctuations: 
, convex wall; (a) u' in the inner region (7 < 0- l ) ,  (6) u' in the outer region 7 > 0.1, (c) v'. ---- 

_._ , concave wall; --.-, flat wall; __ , Gaussian distribution. The distributions are shown 
with their apices rather than their origins coinciding. The origins are shown in some typical cases, 
viz. for curves (i)-(vii). 

have been placed in such a way that their apices rather than their origins coincide 
with one another. It can be seen from the figures that the curves for the u fluctuations 
are generally more skewed than the curves for the v fluctuations. Also, the direction 
of skew is opposite for the two fluctuations. That is, the curve for the u fluctuations 
has a negative tail whereas the curve for the v fluctuations has a positive tail. It is 
also seen that near the wall the curves for u fluctuations are nearly symmetrical and 
become more and more skewed as the distance from the wall is increased. Comparison 
of the curves for the two curvatures shows that the effect of curvature is quite strong 
in the case of the u fluctuations. It is observed that concave curvature increases the 
skewness while convex curvature tends to reduce it. In  fact, in the case of the concave 
wall the skewness can be detected from y/6 = 0.3. The curve for the convex wall at  
the same value of y/S indicates a more nearly symmetrical distribution. In a few 
typical cases, the distributions (at approximately the same values of y /6 )  correspond- 
ing to the flat wall at  station 20 are also provided for comparison. It can be seen that 
generally the deviations from the flat-wall distribution are on opposite sides for the 
two curvatures. 

The effect of curvature in the case of the v fluctuations is apparently quantitatively 
small everywhere in the boundary layer. It is, however, important to point out that 
the curves in figure 13 (c) show the probability distributions of the fluctuations from 
the mean value and do not give any information on the shift in the mean value itself. 
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Contribution as a percentage of { - G) 

Component Concave wall Convex wall 

u-v+ + 79 + 72 
+ 53 u+v- + 39 

u+v+ - 11.5 - 15 
u-v- - 6.5 - 10 

TABLE 1 

- 
- 
- 
- 

This shift can be quite significant over the curved walls as will be seen from the 
discussion in 3.6. 

3.5. Conditional correlations 

As mentioned earlier, the effect of curvature on the turbulence structure has been 
explained from stability considerations in the past. For a better and more detailed 
understanding of this effect, a study of the various turbulent motions and their 
contribution to the Reynolds stresses will be very helpful. Such studies in the past 
have been very useful in understanding the mechanism of turbulent production and 
transport in flat-wall boundary layers (e.g. Wallace et al. 1972; Willmarth & Lu 1972; 
Lu & Willmarth 1973; Badri Narayanan, Rajagopalan & Narasimha 1974). It is for 
this reason that conditional correlations were measured in the present case. These 
measurements are used to study the effect of curvature on the different turbulent 
motions. 

The distributions across the boundary layer of the four conditional correlations 
(UV), representing the contribution to the Reynolds shear stress are shown in figures 
14 and 15. Of these, figure 14 shows the data for the flat-wall boundary layer at  
station 20. This figure also shows similar flat-wall data from the work of Lu & Wil- 
marth (1973) and Rajagopalan (1974). The agreement between the present and earlier 
results seems to be generally satisfactory and thus establishes confidence in the 
measurement technique used. 

The distributions of these components in the case of the curved walls are shown in 
figure 15. It can be observed that, over the concave wall, especially in the outer layer, 
the shear stress - p G  is increased owing to an increase in the negative contribution 
from the u-v+ component and the suppression of the positive contributions from the 
u+v+ and components. It is interesting to note that the magnitude of the con- 
tributionfrom u+v- is, in fact, reduced in the case of the concave wall. A t  atypicalouter 
location, say y / 6  = 0.6, the relative contributions measured were as given in table 1.  
For ease of reference, we can denote the top two components in the above table as 
‘dominant’ components and the bottom two as ‘occasional’ components. It can be 
seen from the above table that, in the case of the concave wall, both the components 
associated with positive fluctuations of u are suppressed while the dominant component 
associated with negative fluctuations of u is enhanced. This means that the negative 
fluctuations in u would be relatively more vigorous in the boundary layer over the 
concave wall. This conclusion is also substantiated by the distributions of the ratio 
u?/u2+, shown in figure 16. It is seen that the ratio is larger for the concave wall than 
for the convex wall. Since u and v are negatively correlated, one would expect to see 
qualitatively similar behaviour of the ratio v$/v?. This ratio, plotted in figure 16, 

- 
- 

- 

-- 

-- 
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FIGURE 16. The distributions of the ratios uy/u$ and v$/e% across the 
curved boundary layers. 0, convex wall; A, concave wall. 
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exhibits the expected trend. These results from the conditional correlation measure- 
ments are also consistent with those obtained from the probability distributions 
shown in figures 13 (a)-(c). 

3.6. Turbulent transport within the boundary layer 
The detailed measurements of various quantities within the boundary layer reported 
so far have provided sufficient information to enable one to form some conclusions 
about the influence of curvature on the mechanism of turbulent transport in the 
boundary layer. The distributions of the diffusion term for convex and concave walls 
shown in figures 7 and 8 have clearly indicated that curvature has a significant effect 
on the transport of turbulent kinetic energy and pressure energy. The modification 
of the transport of these quantities over the curved walls can be attributed to the 
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behaviour of trhe v fluctuations in the boundary layer. For example, the radial pressure 
gradient inhibits the v+ fluctuations on the convex wall and aids them on the concave 
wall. As a result the outward flux v (8q2+p /p )  is reduced over the convex wall and 
enhanced over the concave wall. The generally steeper gradient of kinetic energy over 
the convex wall and a smaller gradient over the concave wall tend to oppose the 
above effect but apparently are not strong enough to reverse the trend. 

The transport of momentum across the boundary layer (as represented by the 
Reynolds stress) is affected by curvature likewise as has been seen from figure 15. 
However, the nature of the influence of curvature on this transport is more complicated 
than in the case of the turbulent energy transport. This is because the diffusion flux 
of momentum - pZZ depends on the behaviour of both u and v fluctuations. In  addition 
to  the direct effect of the radial pressure gradient, which favours the v fluctuations 
of a particular sign, the changes in the centrifugal force brought about by fluctuations 
in u tend to  influence the v fluctuations indirectly. The momentum transport is thus 
determined by the interaction of the effects of the radial pressure gradient, the 
centrifugal force and the gradient of mean velocity. This interaction produces different 
effects on the four different component conditional correlations shown in figure 15. 
For example, let us consider the conditional correlation u-v+. If a turbulent lump 
located at a point decelerates momentarily, the centrifugal force on the lump decreases 
and therefore i t  drifts to  an orbit of lesser radius. I n  the case of the boundary layer 
over the concave wall this motion would contribute to an increase in the product 
u-v+. This contribution is additional to  the already enhanced contribution due to the 
favoured v+ motions on the concave wall induced by the radial pressure gradient even 
when the lump is moving with constant longitudinal velocity. An opposite effect can 
be expected over the convex wall. Second, the velocity gradient over a large part of 
the concave-wall boundary layer is smaller than that over the convex wall. From 
elementary mixing-length arguments it is easy to  see that this should reduce mo- 
mentum transport (i.e. reduce the magnitude of the negative product u-v+) over the 
concave wall and increase it over the convex wall. From figure 15, i t  can be seen that 
the combined influence of the radial pressure gradient and the centrifugal force is not 
fully countered by the effect of relatively smaller velocity gradients over the concave 
wall, thus resulting in a slightly larger value of the u-v+ component in the case of the 
concave wall compared with the convex wall. 

Considering now the other dominant component, namely u+v-, the effect of the 
radial pressure gradient is to suppress the v- motions over the concave wall and enhance 
them over the convex wall. On the other hand any local instantaneous acceleration of 
a fluid lump will aid the v- motions owing to the effect of the centrifugal force in the case 
of the convex wall. Finally, the smaller mean velocity gradient in the case of the 
concave wall tends to  suppress the transport of momentum in general, thus leading 
to  a reduction in the u+v- component. I n  contrast to this, in the case of the convex 
wall the larger velocity gradient leads to  an increased u+v- component. The net result 
of all these effects can be observed from figure 15 as (surprisingly) a net decrease of 
u+v- in the case of the concave wall compared with the convex wall. 

I n  a similar way, the implications of the interaction on the components u+v+ and 
u-v- can also be analysed. 

It is thus clear t.hat curvature can affect the transport of momentum and turbulent 
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FIQURE 17. Componentwise contributions to - uv’/q2. 
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0 D a 0 Convex wall (station 35) 
W V A Concave wall (station 35) 
0 V A 0 Flat wall (station 20) 

kinetic energy to different extents. Also results presented so far have indicated that 
very close to the wall the nature of the flow (e.g. the law of the wall, the non-dimensional 
distribution of - uv/q2 etc.) is not significantly affected by mild curvature. The effect 
on the turbulence structure further away from the wall can perhaps be attributed to 
the curvature-sensitive diffusion process. The distribution of - uv/q2 shown in figure 
1 (d )  can be explained as presumably due to the different effects of curvature on the 
transports of momentum and turbulent kinetic energy. Apparently, the net effect 
of curvature is to cause greater changes in t h e Z  distribution than in the Fdistribution, 
resulting in a change in the turbulence structure (of which -uv/q2 is a very good 
indication) at large distances from the wall. The component-wise contributions to 
-uv/q2 are shown in figure 17, from which it is seen that particularly the dominant 
components (the negative components which contribute a large amount to the 
Reynolds stress) are increased in magnitude by concave curvature and reduced by 
convex curvature compared with their values for the flat wall. The changes are 
however such as to cause a net increase of - uv/q2 over the concave wall and a net 
decrease over the convex wall. 

The foregoing discussion suggests that the structure of turbulence in the boundary 
layer over the curved walls is to a large extent affected by the relative diffusion of 
momentum and turbulent kinetic energy. These diffusions are influenced to a con- 
siderable extent by the behaviour of v fluctuations. These fluctuations are affected by 
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curvature, either directly through the radial pressure gradient or indirectly through the 
variations in the centrifugal force arising from u fluctuations. The spectral measure- 
ments support the conclusion that curvature primarily affects the v fluctuations. 
Further, the distributions of the integral time scales referred to earlier showed a more 
systematic effect of curvature on the v fluctuations. Also, i t  can be shown from the 
equation for the turbulent kinetic energy of the v fluctuations that curvature results 
in direct production of v fluctuations in addition to their production during the 
transfer of momentum from the u motions (see, for example, Eskinazi & Yeh 1956). 
In  view of all this, it appears that turbulent transport models for curved flows are 
likely to be successful if they are so formulated as to account for the effect of stream- 
line curvature on some characteristic feature of the v fluctuations such as a length 
scale, velocity scale, etc. No attempt will, however, be made in the present paper to 
develop a turbulence model for curved flows, A study in this direction is being reported 
separately. 

4. Conclusions 
The investigation has led to the following conclusions. 
(i) The rate of turbulent energy production is significantly affected by convex 

curvature. Most of the turbulent production in this case is confined to a region very 
close to the wall and this region is even smaller than for a flat-wall boundary layer. 
Mild concave curvature, however, does not seem to affect the production of turbulent 
energy significantly. 

(ii) Even mild wall curvature affects significantly the process of turbulent diffusion 
in the boundary layer. Convex curvature suppresses both the amount of outward 
diffusion of turbulent kinetic energy from the wall region and the extent of the region 
which receives turbulent energy from the wall region. Concave curvature has exactly 
the opposite effect. This results in a reduction in the extent of the log region over the 
convex wall and its increase over the concave wall as observed from the mean velocity 
profiles in figure 1 (a).  

(iii) The integral time scales T, and T,, of the turbulent fluctuations are very strongly 
affected by even mild curvature. The effect is especially spectacular with convex 
curvature. Further, both autocorrelation and spectral measurements indicate that 
curvature has a larger effect on the v fluctuations than on the u fluctuations. 

(iv) Cross-spectral measurements indicate that, over the convex wall, about 50 yo 
of the contribution to the Reynolds shear stress comes from eddies smaller than 4 
of the boundary-layer thickness, whereas, over the concave wall, eddies of this range 
contribute only to 25 yo of the shear stress. The combination of reduced shear stress 
and shift of the spectrum to the high wavenumber end over the convex wall (and a 
corresponding opposite combination over the concave wall) suggests that i t  is the 
structure of the larger eddies that is sensitive to wall curvature. 

(v) Diffusion of both momentum and turbulent kinetic energy is inhibited by 
convex curvature and enhanced by concave curvature. However, the nature of the 
effect of curvature on the diffusion process is different for the two properties. This 
difference is presumably the reason for the observed decrease in the ratio I(uv/q2)) 
over the convex wall and its increase over the concave wall compared with the value 
for the flat-wall boundary layers. 

- -  
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(vi) ‘While the detailed effect of curvature on the various turbulent motions is 
complex, it can generally be said that v+ motions are favoured and v- motions in- 
hibited over the concave wall, the opposite being true for the convex wall. The 
enhanced v+ motions over the concave wall cause the amplitude probability distri- 
bution of the u fluctuations to be perceptibly skewed towards negative amplitudes 
over the outer 70 yo of the boundary layer. 

The authors wish to thank the authorities and staff of the Instrumentation Division 
of the Aeronautical Development Establishment at Bangalore for making available 
their tape recorder and Fourier analyser and extending their help in processing the 
data. 
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